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Abstract: We explore the validity of the generalized Bekenstein bound, S ≤ πMa.

We define the entropy S as the logarithm of the number of states which have energy

eigenvalue below M and are localized to a flat space region of width a. If boundary

conditions that localize field modes are imposed by fiat, then the bound encounters well-

known difficulties with negative Casimir energy and large species number, as well as

novel problems arising only in the generalized form. In realistic systems, however, finite-

size effects contribute additional energy. We study two different models for estimating

such contributions. Our analysis suggests that the bound is both valid and nontrivial

if interactions are properly included, so that the entropy S counts the bound states of

interacting fields.
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1. Introduction

Bekenstein’s “universal entropy bound” [1] states that the entropy S of any weakly

gravitating matter system obeys

S ≤ 2πMR/~ (1.1)

where M is the total gravitating mass of the matter and R is the radius of the smallest

sphere capable of enclosing the system.1

Originally this bound arose from a gedankenexperiment by which the matter system

is dropped into a large black hole. Classical general relativity implies that the black

hole horizon area increases by ∆A ≤ 8πGMR in this process. By the generalized

second law of thermodynamics [2, 5, 6] (GSL), the total entropy visible to an outside

observer will not decrease; hence, S ≤ ∆A/4G~ and Eq. (1.1) follows (see, e.g., Ref. [7]

for a review). We will not address here the controversial question concerning the extent

to which quantum effects modify or invalidate this derivation from the GSL [8–12] (for

reviews, see Refs. [13, 14]).

The present paper studies aspects of a different question: Does the Bekenstein

bound actually hold in nature? We are motivated to revisit this issue by a recent re-

derivation [15] of Bekenstein’s bound from the generalized covariant entropy bound [16]

(GCEB), from which Eq. (1.1) emerges in a somewhat stronger form:

S ≤ πMa/~. (1.2)

Here a is the smallest distance between any two parallel planes that bracket the system;

a more precise definition is given in Ref. [15]. Note that a ≤ 2R, so that the “generalized

Bekenstein bound”, Eq. (1.2), implies the original Bekenstein bound, Eq. (1.1). (For

1For an antecedent, see Ref. [2]. We assume throughout that the system resides in Minkowski space.

The Bekenstein bound has sometimes been applied to field systems on a curved background, and to

strongly gravitating systems such as a black hole or a closed universe. With few exceptions [3], this is

not sanctioned by its derivation, and we will not concern ourselves with violations [4] arising in this

way.—We set ~ = kB = c = 1, except in the introduction, where ~ is displayed explicitly. Newton’s

constant, G, is always displayed.
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example, for a rectangular box, a is the length of the shortest edge. For a sphere,

a = 2R, and the two expressions agree.) Unlike the derivation of the Bekenstein bound

from the GSL, the new derivation from the GCEB takes place in flat space, which

excludes corrections from Unruh radiation.

The GCEB is a stronger version of the covariant entropy bound [17] (CEB), a

conjecture concerning the entropy of matter in arbitrary spacetime regions. Compared

to the GSL, the covariant bounds are less well-established hypotheses. However, they

are more general (for example, they imply the GSL as a special case), and they are

essential for putting the holographic principle [18–20] on a firm footing. If true, the

covariant bounds will thus be of wider significance in quantum gravity.

This tempts us to regard the GCEB as the more fundamental conjecture, and to

consider the Bekenstein bound a consequence of the GCEB. Tests of the GCEB gen-

erally require the computation of families of null geodesics, which can be complicated.

The Bekenstein bound2 is more easily applied to examples, because the mass and size

of many systems are known or easily determined. Thus the Bekenstein bound offers a

simple way of testing the GCEB.

In Refs. [16,21], sufficient phenomenological conditions were identified under which

the GCEB (and, directly or by extension, the Bekenstein bound) hold automatically.

In order to determine its wider validity, our study of the Bekenstein bound will focus

chiefly on examples in which the assumptions of Refs. [16, 21] do not hold. Roughly

speaking, this requires consideration of systems whose entropy is dominated by modes

whose wavelength is of order the largest dimension.

To test Eq. (1.2), one needs precise definitions of S, M , and a. Which type of

entropy (canonical, microcanonical, entanglement, etc.) does the bound refer to? Dif-

ferent choices may agree in the high-temperature regime, but they are certainly in-

equivalent in those systems which are most likely to violate the Bekenstein bound.3

What definition of energy should be used: the energy above the ground state, or the

gravitating mass; an eigenvalue or an expectation value? Geometrically, the width a is

sharply defined in the weak gravity limit. But what is the radius of a quantum state?

Not surprisingly, analyses using different definitions come to different conclusions about

the validity of the Bekenstein bound [1, 8, 9, 11, 24–38].

Our point of view is agnostic—we do not claim to know the correct formulation

2From here on, the term will refer to the generalized Bekenstein bound, Eq. (1.2), unless specifically

stated otherwise.
3The same systems are trivial in the context of the original covariant entropy bound [17], which is

thus less sensitive to the precise definition of S than the GCEB. Indeed several proposals of cosmological

entropy bounds were falsified by simple examples whose entropy is unambiguous (see, e.g., Refs. [7,

22, 23]).
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of Bekenstein’s bound a priori. Rather, we would be content to find any reasonable

definition of S, M , and a such that the Bekenstein bound becomes a precise, non-

trivial, and empirically true statement. In the spirit of the covariant entropy bound,

the general goal is to identify laws governing the information content of spacetime

regions—patterns whose origin and implications may be of some significance.

Here we examine the validity of the Bekenstein bound with a microcanonical defi-

nition of entropy:

S ≡ logN (M), (1.3)

where N (M) the number of energy eigenstates with eigenvalue E ≤ M . This definition

is presented in detail in Sec. 2. It is motivated empirically by additional difficulties that

arise if canonical ensembles are considered [26], or if states other than energy eigenstates

are admitted [37, 39].

We must also ensure that the systems we consider have finite width a. Initially, we

enforce this by decree: we impose rigid boundary conditions restricting field modes to

finite regions. We study mainly systems of scalar fields in finite cavities. In Sec. 3, we

verify that the bound is easily satisfied at high temperatures, where the canonical and

microcanonical ensembles agree. We note that the bound becomes nearly saturated

when the typical energy of quanta drops to the inverse size of the system.

In Sec. 4, we construct situations in which the Bekenstein bound is apparently

exceeded. Field systems with negative Casimir energy seem to violate Eq. (1.1) by

permitting its right hand side to become negative. Moreover, by proliferating the

number of field species, the entropy of a cavity of fixed size and fixed energy can

apparently be increased above (1.1). In addition to these two well-known difficulties

we illustrate a new problem that occurs only in the tighter version (1.2) of the bound:

Because the smallest width enters the right hand side, the entropy can apparently be

made arbitrarily large by increasing the transverse area of a thin system at fixed energy

and width (Sec. 4.3).

In response to arguments raised against his bound, Bekenstein [27, 28, 38] has in-

sisted that Eq. (1.1) applies only to complete systems. Indeed, each of the above

examples is an incomplete system, because fields were assumed to be localized to finite

regions, but the matter causing this restriction was not included in the total energy.

Bekenstein has treated such examples by identifying missing parts and estimating

their minimum mass [27, 28, 38] (and in some cases, also the additional entropy). This

is satisfactory if the goal is to dispute that a given setup violates the bound. However,

the procedure has been somewhat ad hoc, varying strongly depending on the specific

example considered. It has not led to a clear definition of what does, in fact, constitute

a “complete system”, whose entropy and mass could be fully calculated in a single step.
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In order to find an appropriate criterion, we will try to identify a single source of

extra energy which contributes sufficiently to each and every one of the problematic

examples so as to validate the bound. In Secs. 5 and 6, we devise two different models

for completing the partial systems of Secs. 3 and 4. Each model implements one par-

ticular aspect that might be considered necessary for the spatial restriction of fields:

confinement by interactions, and stability against pressure. We evaluate both mod-

els according to their ability to restore the validity of the Bekenstein bound without

rendering it trivial.

In Sec. 5, we note that the energy eigenstates of free fields are delocalized; to

restrict to finite spatial width, interactions are essential. We model the confinement

of the active fields to a region of with a by couplings to a stationary background

potential. We estimate that the gradient energy of the background gives a lower bound

on the energy we had failed to include in our previous analysis. We find that that this

extra contribution was rightfully neglected in the unproblematic examples of Sec. 3.

However, in the apparent counterexamples of Sec. 4, confinement effects are dominant.

They significantly increase the total energy and restore the validity of Bekenstein’s

bound.

In Sec. 6, we note that field modes restricted to a finite region exert pressure (or

suction) on the region’s boundary [27]. This pressure must be balanced by a tensile wall

or “container”, whose minimum energy we calculate as a function of its shape and the

orthogonal pressure. This generalizes earlier estimates [27] to nonspherical systems.

We find that this model is not satisfactory. Namely, the containment contribution

by itself is not sufficient to eliminate counterexamples, although it does give large

corrections where they are not needed (in the examples of Sec. 3). Moreover, we argue

that a container, and the resulting extra contribution to the energy, are in principle

avoidable.

In Sec. 7, we conclude that confinement by interactions constitutes an important

physical mechanism by which the restriction to finite spatial width contributes to the

total energy of a system, whereas the container model does not appear to capture an es-

sential requirement. Our analysis shows that interactions play a crucial role and should

be properly included from the start. Applying the bound to free fields obeying external

boundary conditions robs the bound of its physical content. One must consider real

interacting theories, which contain bound states of finite spatial extent. The entropy

S is thus the logarithm of the number of bound states whose spatial width does not

exceed a and whose energy eigenvalues satisfy E ≤ M .
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2. Modes, states, and entropy

In this section we describe in detail how the Bekenstein bound is applied to field systems

confined to compact spatial regions. This involves the construction of a Fock space and

the counting of admissible energy eigenstates. As a starting point, we enforce field

localization by imposing external boundary conditions—an approach we will dismiss

as unphysical in Sec. 5.

Consider a free scalar field φ(t, x, y, z), of mass µ, occupying a stationary cavity of

arbitrary size and shape. We will assume that φ respects Dirichlet boundary conditions

(φ = 0) on all cavity walls. The Fock space construction begins by expanding φ into

energy eigenmodes,

φ(x, y, z, t) =
∑

k

ak uk(x, y, z) eiωt + c.c., (2.1)

whose spatial factor obeys the time-independent Schrödinger equation

∇i∇iuk = (ω2 − µ2)uk, (2.2)

subject to the assumed Dirichlet boundary conditions.

Acting on the vacuum, the operator a†
k

creates a one particle state of energy ω(k).

More general energy eigenstates of the Fock space are constructed by acting with a

variety of creation operators ak1
, ak2

, etc., one or multiple times. Thus, each energy

eigenstate is labeled by a set of occupation numbers {Nk} listing the number of particles

in each mode k. The corresponding energy eigenvalues are

Eφ({Nk}) =
∑

k

Nkω(k). (2.3)

These states form a complete orthonormal basis of the Fock space.

We will generally consider a Lagrangian with Q such scalars,4 φq, 1 ≤ q ≤ Q,

which will be assumed not to interact mutually. Then eigenstates are characterized by

occupation numbers {N (q)
k

} and energy eigenvalues

Eφ({N (q)
k

}) =
∑

k,q

N
(q)
k

ω(q)(k). (2.4)

We define the entropy S(M) microcanonically:

S(M) = logN (M), (2.5)
4At high temperature we may think of Q more generally as an effective number of massless scalars,

representing also massive scalars, as well as fermions and vector fields whose mass is negligible com-

pared to the characteristic temperature. For example, in a cavity with conducting walls, for temper-

atures well below .5 MeV, we have Q = 2, corresponding to the polarization states of the photon.
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where N (M) is the number of energy eigenstates with energy E ≤ M . This is equiv-

alent to the statement that S = log dimH(M), where H(M) is the Hilbert space

spanned by the energy eigenstates with E ≤ M . Though we obtain S by counting pure

states, note that a definition of S in terms of a density matrix ρ̂ would be equivalent,

as long as ρ̂ is constructed entirely from the Hilbert space H(M). This is because

Tr ρ̂ log ρ̂ ≤ logN (M), with equality holding for the density matrix with equal weights

for all states. However, definitions of S that permit the admixture of states with

E > M by superposition or in a density matrix are inequivalent and will be explored

elsewhere [39]. In the present paper, M will be regarded as a sharp cutoff for energy

eigenstates, not just as a cutoff for energy expectation values.

Other choices would have been conceivable, for example a canonical definition.5

However, it is already of considerable interest to show that there exists some set of

definitions under which Bekenstein’s bound is well-defined, non-trivial, and not vio-

lated. Our choice is guided by the conceptual simplicity of counting pure states, and

by the fact that Bekenstein’s bound contains M (so it is natural to regard energy, not

temperature, as the relevant macroscopic quantity to be fixed, and to work with energy

eigenstates).

The Bekenstein bound does not contain Newton’s constant, and it can be tested

entirely within the non-gravitational setting of quantum field theory in flat space.

However, in that context the bound might appear to be meaningless because there

is no unique notion of absolute energy—one can always shift all values by a constant

amount [26]. In order to define E we must recall the derivation of the Bekenstein bound

from the focussing of light-rays [15] (before the zero gravity limit is taken): E is the

gravitating mass of the matter system.

A central issue to be debated in this paper is the question of how E should be

calculated. We will begin by defining E as the total energy of the φ field(s) in the

cavity:

E = Eφ + EC. (2.6)

Here EC is the Casimir energy, i.e., the energy of the vacuum state, which may be

non-zero due to quantum effects. At a later stage (Sec. 5), we will refine this definition

of E and include additional contributions which we neglect for now.

The larger the field mass µ, the fewer states will be allowed below a fixed energy

M , because some of the energy allotment is diverted into rest mass, which carries no

5This would define S as the entropy of the density matrix of states at the temperature at which

the energy expectation value is M . With this definition, apparent violations of Bekenstein’s bound,

in addition to those discussed in Sec. 4, would occur at very low temperatures [26]. However, those

violations would be resolved by the effects discussed in Sec. 5 [38].
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entropy. Since we are interested in challenging Bekenstein’s bound, we shall set µ = 0

and consider only massless fields from here on.

3. Scalar fields in a cavity

In this section we verify that the Bekenstein bound, Eq. (1.2), is satisfied by systems

at high temperature, and that it becomes nearly saturated in the regime where the

thermodynamic approximations begin to break down.

3.1 High temperature limit

In general, the microcanonical entropy, Eq. (2.5), is difficult to calculate exactly. How-

ever, at high temperatures it agrees with the entropy of a corresponding canonical

ensemble, which can be easily computed in a thermodynamic approximation.6 For the

thermodynamic description to be valid, the discreteness of the energy spectrum due to

the finite size of the cavity should not be noticable. Thus we require that the charac-

teristic wavelength of the radiation, 1/T , be short compared to the length scales of the

cavity. In particular,

T ≫ 1

a
. (3.1)

For the same reason, the temperature should also be much larger than the mass of

the scalar field. This is not an important restriction: in any case we generally have

massless fields in mind since they allow for the most entropy at a given energy.

Consider the canonical ensemble of the field(s) φ at the temperature T . With other

parameters fixed, the energy expectation value, 〈E〉(T ), is a monotonic function of the

temperature; we denote the inverse function by T (E). Let S(T ) be the entropy in the

canonical ensemble. Then the microcanonical entropy of Eq. (2.5) is given by

S(M) ≈ S[T (M)] (3.2)

to an excellent approximation.

The expectation value for the total energy of the scalar field(s) is

〈E〉(T ) =
π2

30
QV T 4, (3.3)

6In this regime, the assumptions of Ref. [21] can be shown to be satisfied. Thus, we could sim-

ply appeal to that analysis. In the present context, however, explicit verification of the bound is

straightforward and more instructive.
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where V is the volume of the cavity. Recall that Q is the effective number of scalar

degrees of freedom. The canonical entropy is

S(T ) =
4

3

(

π2

30

)

QV T 3. (3.4)

By inverting Eq. (3.3) and using Eq. (3.2) we find that the microcanonical entropy

obeys
S

πMa
≈ 4

3πTa
≪ 1. (3.5)

in the high temperature regime. Since Ta ≫ 1 by assumption, the bound (1.2) holds

comfortably. Except for this condition, the result is independent of the shape and

volume of the cavity.

Note that our result is also completely independent of the number of species, Q.

This may seem surprising. After all, as Q grows, there are more ways to distribute

the total energy into combinations of particles, so the entropy should increase without

bound as Q → ∞. However, this argument applies only if the total energy, or 〈E〉, is

fixed. Here, we are holding the temperature at a fixed value, which must obey Eq. (3.1).

By Eq. (3.3), increasing Q at fixed T leads to an increase in 〈E〉. Increasing Q at fixed

〈E〉, however, is accompanied by a decrease in T . The above calculation shows that

violations of the bound cannot occur before T drops below the minimum value required

for the validity of the canonical approximation, set by Eq. (3.1).

3.2 Saturation limit

Having verified that the bound is always satisfied at temperatures much larger than the

inverse size of a system, let us approach the opposite limit in which the thermodynamic

approximation breaks down. If we extrapolate the high temperature expressions, (3.3)

and (3.4), to the temperature T ≈ 1/a, we find that the entropy and the right hand

side of the bound are both of order Q, suggesting that the bound becomes saturated

and perhaps even violated.

To resolve this issue, we can no longer rely on the canonical approximation to the

microcanonical entropy. The discrepancy with the microcanonical entropy becomes a

factor of order unity when Ta ≈ 1. For energies around and below Q/a, the micro-

canonical entropy must be evaluated by explicit state counting. Before considering the

extreme deformations (very large species number, or very thin cavity shapes) that lead

to apparent difficulties, let us verify the validity of the bound for the generic case of a

few species confined to a cavity whose various dimensions are roughly equal.

At low energy, the microcanonical entropy depends sensitively on the field content

and the shape of the cavity, and on the boundary conditions employed. This forces
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us to select a specific (though representative) example, say a single (Q = 1) mass-

less scalar field confined to a cubic cavity of side length a, with Dirichlet boundary

conditions. This example, and many others, have been studied (in the context of the

original Bekenstein bound) in Ref. [29]. We reproduce here only the steps necessary to

demonstrate explicitly how the entropy S(M) is calculated and quote the main results.

The mode solutions are

φklm = (2ω)−1/2

(

2

a

)3/2

sin
kπx

a
sin

lπy

a
sin

mπz

a
eiωt, (3.6)

with frequency

ω =
π

a

(

k2 + l2 + m2
)1/2

, (3.7)

where k, l, and m run over the positive integers. We wish to verify that

S(M) ≡ logN (M) ≤ πMa (3.8)

for all values of M . We will set EC = 0 until Sec. 4.1, where some implications of

nonzero Casimir energy will be considered.

In calculations both of the entropy, and of the bound, only the product Ma enters;

the overall scale of the system is not relevant. In the cubic example considered here,

the smallest light-sheet width is a. In order to avoid cluttering our expressions with

factors of π/a from Eq. (3.7), we set

a = π. (3.9)

Expressions for general a can be recovered by multiplying every energy by a factor a/π.

The only state with 0 ≤ M <
√

3 is the vacuum, so S = 0 and the bound is obeyed.

For M =
√

3, a new state is allowed, namely k = l = m = 1 with occupation number

1; hence, N (
√

3) = 2. Again the bound holds, since S/πMa = log 2/
√

3π2 < 1.

For M =
√

6, there are 3 additional states (k = l = 1, m = 2 and permutations,

with occupation number one), so that N = 5. However, log 5/
√

6π2 ≈ 1
11

is still less

than unity. For larger M , one finds that the entropy increases to within an order of

magnitude of saturating the bound, before asymptoting to the thermodynamic behavior

S

π2M
→ 4π

3

( π

30M

)1/4

. (3.10)

More details are found in Ref. [29]; see Fig. 1 therein.

To summarize, for a single scalar field (Q = 1) in a cube, the bound (1.2) is obeyed

for any value of the total energy. The closest approach to saturation occurs at small

values of M (≈ 10/a); at larger values, explicit state counting exhibits the onset of the

asymptotic thermodynamic behavior S ∼ M3/4 described in Sec. 3.1.
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4. Challenges to the bound

In this section we describe various violations of the bound (1.2) which may occur with

the definition (2.6) of the energy. In later sections we will argue that there are additional

contributions to the energy which can salvage the bound.

4.1 Casimir problem

The finite size of the cavity gives rise to a shift of the vacuum energy density in its

interior, whose integral is the Casimir energy, EC . So far we have neglected this con-

tribution. However, the Casimir energy is an inseparable part of the total gravitating

energy E of any confined field, and our definition (2.6) calls for its inclusion. (There

are further contributions arising from the enforcement of boundary conditions, which

are not yet included in E and will be treated in later sections.) The Casimir energy,

including its sign, depends sensitively on the field type, the detailed shape of the cavity,

and the type of boundary conditions [40].

There are many well-known examples in which the Casimir energy is negative. For

such cases it is immediately obvious that the bound can be violated. Simply choose

M negative but of smaller magnitude than EC. Then there is at least one state (the

vacuum) with energy below M , and we have S ≥ 0. Thus the entropy exceeds the

bound, πMa, which is negative. Note that this difficulty occurs also in the original

Bekenstein bound, Eq. (1.1), in which the largest dimension of the system is used.

Though the above argument suffices to pose the Casimir problem in principle, a

slightly more quantitative statement will later be needed to determine if we are able to

resolve the problem. The Casimir energy is not generally known in closed form, but it

can be calculated for many special cases and limits, including the rectangular cavities

studied here. It will be sufficient to note that the energy of the vacuum state, in known

examples, receives a Casimir correction which is of the general form

EC =

Q
∑

i=1

ηiA

a3
. (4.1)

Here a, the width of the system, is assumed to be the smallest dimension; A is the

transverse area. Q is the effective number of scalar field degrees of freedom. The num-

bers ηi depend on the field type and the exact shape of the cavity. In known examples,

the ηi are typically of order 10−1 or smaller and need not be positive [40]. Physically,

this expression arises because the Casimir energy density is set by the smallest dimen-

sion of the system and hence is of the form ηi/a
4 for each species. Integration over

the volume and summation over species yields Eq. (4.1). This general estimate reduces
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to the results of Ref. [38] for the case of an electromagnetic field confined to certain

cavities.

4.2 Species problem

If the number of sufficiently light field species in a cavity, Q, is increased, the entropy

will grow even though the total energy is held fixed. This is because for each particle

in each state, one has an additional choice of species. Hence, the number of states

with N =
∑

qklm N
(q)
klm particles and energy Eφ ≤ M increases by a factor of QN , while

the right hand side of the bound remains unchanged. Thus, for any M large enough

to allow at least the Q different one-particle states, there always exists some critical

species number Qvio such that the bound is violated for all Q ≥ Qvio [25]. This is known

as the “species problem”.7

The species problem is most acute when the number of quanta is small. Consider,

for example, the cubic cavity introduced above and choose M so that at most a single

particle of the lowest energy is admitted: M =
√

3. With Q = 1, we found in the

previous section that S = log 2, whereas the right hand side was somewhat larger,√
3π2. With Q noninteracting scalars, however, there are Q orthogonal one-particle

states, plus the vacuum, all of which have E ≤ M . Thus the entropy is given by

S = log(1 + Q) (4.2)

In this example the bound will be violated for Q ≥ e
√

3π2 − 1 ≈ 3 × 107.

Of course, there is no evidence that the actual number of species in Nature is so

large; in this sense, the species problem is not manifest empirically. Indeed, one could

regard the Bekenstein bound as a prediction of an upper limit on the number of field

degrees of freedom [11]. We do not adopt this point of view here, because the model of

Sec. 5 suggests that when all contributions to the mass are included, the bound actually

becomes more and more easily satisfied at large species number.

Note that the species problem does not occur in the covariant bound, since the

length scale at which semi-classical gravity breaks down due to one-loop effects is

ℓPl

√
Q. The Bekenstein bound, however, does not contain Newton’s constant. Argu-

ments involving renormalization of G [41] cannot be advanced in its defense.

4.3 Transverse problem

Finally, we consider thin cavities, which give rise to a problem that is unique to the

generalized Bekenstein bound (1.2), as opposed to Eq. (1.1). A thin system is one with

7There are variants of this problem, for example a single species with extremely large spin. The

analysis and resolution proceeds along similar lines.
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very unequal dimensions. The width, a, can be chosen to coincide with the smallest

dimension [15]. A large transverse size allows orthogonal modes with nearly equal

energy, which differ only in their large transverse wavelength. This gives rise to high

entropy at low energy. Hence, for thin systems, the bound can be violated even for

Q = 1. We call this the transverse problem.

There are two limits of interest, roughly the shapes of a pencil and of a pancake.

We will consider these limits for a rectangular cavity of side lengths a, b, and c. Without

loss of generality, we assume that

a ≤ b ≤ c. (4.3)

(The special case a = b = c was already considered above.) With Dirichlet boundary

conditions, the mode solutions for a general rectangular cavity are

φklm =
2√

ωabc
sin

kπx

a
sin

lπy

b
sin

mπz

c
eiωt, (4.4)

with frequency

ω = π

(

k2

a2
+

l2

b2
+

m2

c2

)1/2

, (4.5)

where k, l, m are positive integers.

4.3.1 Pencil-shaped cavity

First, consider an elongated cavity with a = b ≪ c. Instead of c, we find it convenient

to use the dimensionless aspect ratio

ǫ ≡ a

c
≪ 1. (4.6)

We choose the light-sheet that gives the shortest width, a, and we fix the overall scale

of the cavity by choosing

a = π (4.7)

as in the cubic example. Equation (4.5) simplifies to

ω =
(

k2 + l2 + m2ǫ2
)1/2

. (4.8)

For 0 ≤ M <
√

2 + ǫ2, the bound is obeyed as the vacuum is the only state. For

larger M , more and more single particle states with k = l = 1 and increasing m are

admitted. In this mass range,

√
2 + ǫ2 ≤ M <

√
5 + ǫ2, (4.9)
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the number of states is given exactly by

N (M) = 1 +

√
M2 − 2

ǫ
, (4.10)

where it is understood that the integer part is taken.

Eq. (4.10) shows that for M >
√

2, the density of states can be made arbitrarily

large by choosing the edge c to be much longer than a (ǫ ≪ 1). The entropy grows

logarithmically with the transverse area A:

S ≈ − log ǫ = log
A

a2
. (4.11)

Thus, S can be increased arbitrarily while keeping M and a fixed. Hence, the general-

ized Bekenstein bound can be violated.

As M is increased above the range (4.9), states with higher (k, l) and multiparticle

states become allowed. But Eq. (4.10) still gives a lower bound on N (M). It follows

that an aspect ratio of

ǫvio = M exp(−π2M) (4.12)

is sufficient to violate the bound for any M ≫ 1. This means that one side of the box

is exponentially longer than the other two sides.

For smaller values of M , the required aspect ratio does become practically feasible,

though ǫ still has to be quite small to cause violation. To illustrate this, let us not fix

M but find the thickest system (the largest ǫ) that allows violation for some choice of

M . We take Eq. (4.10) to be exact and assume that N ≫ 1. After the calculation we

will demonstrate that this approximation is self-consistent.

From Eq. (4.10), we see that the bound is violated if

ǫ2 < (M2 − 2) exp(−2π2M). (4.13)

The right hand side is maximal for

M(ǫmax
vio ) =

1

2π2
+

√

2 +
1

4π4
≈ 1.47. (4.14)

Hence the largest aspect ratio leading to violation takes the value

ǫmax
vio ≈ 2.01 × 10−7. (4.15)

The critical mass M(ǫmax
vio ) falls well below the value

√
5 at which Eq. (4.10) becomes

an underestimate. We also note that N (M) grows far less rapidly than exp(π2M) for

M > M(ǫmax) and that the bound is obeyed in the thermodynamic limit. Finally, we
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may verify that N ≈ 1/ǫ ≫ 1. Hence our above approximation is self-consistent and

the bound cannot be violated for any values of ǫ exceeding ǫmax
vio . We conclude that

pencil-shaped cavities whose length exceeds their diameter by a factor at least of order

107 admit violations of the bound at least for low values of M of order the inverse width

of the cavity.

4.3.2 Pancake-shaped cavity

Now consider a thin, pancake-shaped cavity with a ≪ b and a ≪ c, and define the

small aspect ratios δ ≡ a/b and ǫ ≡ a/c. Taking a = π, Eq. (4.5) simplifies to

ω =
(

k2 + l2δ2 + m2ǫ2
)1/2

. (4.16)

Again there is a gap, M ≈ 1, above which densely spaced states become allowed. Below

M ≈ 2 all non-vacuum states are single particle states with k = 1. The number of

states below M is given by

N (M) =
π(M2 − 1)

4δǫ
(4.17)

to an approximation which is good for δǫ ≪ M2 − 1 ≤ 1.

Again, we find that the entropy grows logarithmically with the transverse area A:

S ≈ − log δǫ = log
A

a2
. (4.18)

Since the generalized Bekenstein bound is independent of A, it can be violated for

sufficiently large A. This remains true even at larger values of the energy, M > 2,

when the right hand side of Eq. (4.17) becomes only a crude lower bound on N .

It is interesting to ask “how thin” the cavity must be so that the bound can be

violated for some M . The bound is violated if

δǫ <
π

4
(M2 − 1) exp(−π2M). (4.19)

The right hand side is maximal for M = π−2 + (1 + π−4)1/2 ≈ 1.11. Hence the bound

can be violated if

δǫ < 3.19 × 10−6. (4.20)

In particular, for a square cavity (δ = ǫ), violations occur if the width-to-transverse-

length ratio is at most

ǫmax
vio ≈ 1.78 × 10−3. (4.21)
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4.3.3 Summary

We have considered thin rectangular cavities whose sidelengths obey a ≤ b ≤ c and

bc ≫ a2. We expect our conclusions to apply qualitatively for more general cavities

with transverse area much larger than the smallest dimension squared (A ≫ a2).

Then Eqs. (4.11) and (4.18) suggest that the entropy of any thin system at fixed

low energy (M ≈ 1/a) generally grows with the transverse area as

S ≈ log
A

a2
, (4.22)

whereas the right hand side of Eq. (1.2) is independent of A and of order unity. For

systems with dimensions of order a2/A ≈ 10−6 or thinner, the entropy in Eq. (4.22)

therefore violates the bound.

4.4 Comparing and combining problems

Among the three problem types we present here, two (species and Casimir) arose al-

ready in the context of the original Bekenstein bound (1.1), in which the circumferential

diameter is used instead of the (smallest) width a. The different definition of the rele-

vant length scale means that the original bound is immune to the transverse problem,

which arises only for the generalized Bekenstein bound, Eq. (1.2).

The different problems can exacerbate each other when they are combined. For

example, one can trade high species number for thinness in concocting apparent coun-

terexamples to the bound. For Q > 1, violations occur already at larger (“less thin”)

values of ǫ than those found in Sec. 4.3.

Similarly, the Casimir problem can exacerbate the transverse problem. Suppose

that EC < 0 for a given combination of fields in the thin limit (A → ∞ as a is held

fixed). Take Q = 1 and recall the pencil-shaped cavity studied in Sec. 4.3 and the

conventions used there. The vacuum energy receives a Casimir shift of order η/ǫ. For

the pancake shape, the shift is of order η/δǫ. In either case the shift can be made

arbitrarily large, and the energy of many excited states will be negative, or positive

but too small for the bound to be valid.

The species problem, like the thin-cavity problem, may also be exacerbated by

Casimir energy. If the Casimir energy is negative for some field, then it can be made

arbitrarily large in magnitude by including Q such fields. In such cases, N (M) grows

with Q not only due to the greater degeneracy of energy levels, but also due to the

negative contribution from EC.
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5. Confinement energy

So far, our analysis of field systems has assumed Dirichlet boundary conditions without

including the matter required to enforce them. But a free field cannot be legislated

to vanish outside a given region of space; physically, it must be forced to do so by

couplings to other matter or to itself. If the Bekenstein bound applies only to complete

systems, then our analysis so far will have fallen short.

For example, the electromagnetic field modes in a cavity will vanish on the bound-

ary only if a sufficient number of electric charge carriers are available in the boundary

material. Their density and coupling strength will also determine the depth of pene-

tration of field modes into the surrounding conductor, and thus its minimum width.

Bekenstein [38] recently showed that the extra energy contributed by such charge car-

riers suffices to restore the validity of the bound (1.1) in apparent counterexamples

considered by Page [35, 36].8

The purpose of this section is to generalize this type of argument. A specific model

is constructed in order to estimate a lower bound on the energy cost of confining fields

to a region of width a. We then revisit our earlier examples and ask whether the extra

energy resolves the apparent counterexamples found in Sec. 4.

5.1 Energy of a confining background field

5.1.1 A background field model of confinement

Let us begin by estimating what it takes to confine a single scalar field φ to a cavity

(we will soon generalize this to multiple species). We model the confining matter by a

turning on a static background field σ(x, y, z) with standard kinetic term (∇σ)2, which

couples to the field φ through a term λφ2σ2. We must assume that the dimensionless

coupling obeys

λ < 1, (5.1)

since strong coupling leads to large corrections; in particular, one-loop contributions

to the energy would not be under control. We will allow σ to be any function of the

spatial coordinates, but we insist on adding the integrated gradient energy density of

the σ field to the total energy:

E = Eφ + EC + Eσ, (5.2)

8One of Page’s counterexamples [36] to Eq. (1.1) is really a more complicated relative of the pencil

problem of Sec. 4.3.1. Our setup is simpler because it is designed to challenge only the stronger version

of Bekenstein’s bound, Eq. (1.2).
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where

Eσ =
1

2

∫

d3x(∇iσ)(∇iσ). (5.3)

Implicit in this model is a distinction between an active field and a confining,

non-dynamical background field. This is obviously somewhat artificial.9 After all,

dynamical fields are quite capable of confining themselves in interacting field theories,

and in Sec. 7, a revised definition of entropy will be given which refers to complete

systems from the start. For now, our task is merely to estimate how much energy it

takes to patch up examples that are physically incomplete field systems.

We begin with a set of field modes obeying sharp boundary conditions, as in Secs. 3

and 4. Next, we modify the system by couplings to a background field, enough to justify

the spatial confinement of modes, but without significantly changing the number of

states. Then we estimate the minimum energy contributed by the confining matter.

Finally, we show that due to this extra energy, our naive conclusion that Bekenstein’s

bound is violated was not self-consistent.

The Fock space construction begins as usual by expanding φ into energy eigen-

modes,

φ(x, y, z, t) =
∑

k

akuk(x, y, z)eiωt + c.c., (5.4)

which obey the Schrödinger equation

(∇i∇i + λσ2)uk = ω2uk. (5.5)

Acting on the vacuum, the operator a†
k

creates a one particle state of energy ω(k).

We call this particle confined to a region V if the support of the corresponding mode

function is concentrated in that region, i.e., if

∫

V
d3xuku

∗
k
≈

∫

R3

d3xuku
∗
k
. (5.6)

More general energy eigenstates of the Fock space are constructed by acting with a

variety of creation operators ak1
, ak2

, etc., one or multiple times. We call such a state

confined to V if and only if all of its particles are confined to V.

9Depending on the Lagrangian, the model can be physically realized by solitons. Nonperturbative

solutions generate a potential for perturbative states, some of which may be bound. Application of

the Bekenstein bound in this context was investigated in Ref. [32]. We emphasize, however, that our

eventual definition of S in Eq. (7.1) refers to any discrete eigenstate of the spectrum, i.e., not only

to bound states arising in a background potential but also to those arising simply by perturbative

interactions.—I wish to thank J. Bekenstein for pointing out Ref. [32] to me.
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5.1.2 Estimating the confinement energy

To achieve sharp boundary conditions for the field φ, the background field σ would

have to form an infinite potential well: inside V, σ = 0; outside, σ → ∞. This requires

taking a limit in which σ changes by an infinite amount over zero spatial distance, so

that Eσ will diverge. Hence, the cavities studied in Secs. 3 and Sec. 4 would actually

have infinite total energy.

In a cavity, all but a finite number of modes have ω > M and hence would not

count towards the entropy S in any case. There is no point in confining such modes.

Moreover, there is no need to suppress the amplitude of modes sharply; particles are

considered well-localized to a region V even if there is a tiny probability to find them

elsewhere.

Hence, consider instead a potential of finite height σ0 > 0, such as a finite well

with σ = 0 inside some compact region V and σ = σ0 otherwise.10 This potential can

only bind φ-particles whose momenta have magnitude less than

k0 = σ0

√
λ (5.7)

in the rest frame of the background potential. Modes with larger momentum will not

be bound. For rectangular V, the bound modes will be roughly of the form of Eq. (4.4),

except that their amplitude will not turn off sharply at the potential step. Instead, the

amplitude develops an exponential tail of width (k2
0 − k2)−1/2.

A finite potential well still has infinite gradient energy. However, the modes change

negligibly if the discontinuous jump of σ is slightly smeared. In order to reduce the

gradient energy Eσ as much as possible, let us smear σ over the entire region V, i.e.,

let σ rise continuously from 0 in the center of V to σ0 at the boundary of V; outside V,

we still take σ = σ0, which costs no gradient energy at all.

We can now estimate a lower bound on the energy required to confine a single

field species to a region of width a and transverse cross-section A. The gradient energy

density is at least of order σ2
0/a

2, since σ has to drop to 0 and rise back to σ0 over a

distance a. Integration over the volume Aa yields

Eσ &
Aσ2

0

a
&

Ak2
0

a
, (5.8)

where Eqs. (5.1) and (5.7) have been used.

10We are choosing the region entering the Bekenstein bound to coincide with the potential well.

This is not necessary, but it is the most interesting choice for the purposes of challenging the bound.
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5.1.3 Estimating the entropy

We now propose to test the generalized Bekenstein bound as follows. Pick a background

field σ(x, y, z) with finite gradient energy Eσ. For any M ≥ Eσ and any spatial region

V, let N (σ,V; M) be the number of energy eigenstates in the Fock space which are

confined to V and whose total energy E does not exceed M . Let a be the width of V
as defined in the introduction (e.g., if V is a rectangular box, a can be chosen to be its

smallest dimension). The entropy is defined microcanonically as

S(M) ≡ logN (σ,V; M). (5.9)

The bound asserts that

S(M) ≤ πMa (5.10)

for all σ, V, and M .

To calculate the entropy, one would need to find the eigenmodes of the smeared

potential and count up all the confined Fock space states with total energy below M −
Eσ. However, it is usually unnecessary to work out explicit mode solutions; a reasonable

upper bound for the entropy can be estimated from the known solutions for an infinite

well occupying the same region V. Infinite well modes with momenta below k0 will

remain confined in a finite well with σ = σ0 outside V.11 Under further deformation to

a smooth potential valley, one would expect at most order one changes in the energy

and size of most bound state modes. Also, since both quantities should increase under

this deformation, we will be overestimating the entropy or underestimating the right

hand side of the bound, which is permitted if we nevertheless find the inequality to be

satisfied.

5.2 Examples

We will now revisit the various examples studied earlier, in order to include confine-

ment in our analysis. We will find that confinement energy acts complementary to the

field energy. In examples where the bound was already found to be easily satisfied, cor-

rections from boundary effects are small, validating the earlier analysis. For examples

where saturation of the bound was approached, the boundary effects lead to corrections

of order one. Most importantly, for the problematic examples that appeared to violate

the bound, we will find that confinement is actually the dominant source of energy,

rendering our earlier analysis invalid.
11Bound states which are almost scattering states must also be excluded because they have large

exponential tails outside V and so fail to satisfy Eq. (5.6) (unless the characteristic length entering

the bound is increased accordingly). E.g., one-dimensional modes with momentum k have tails of size

(k2
0 − k2)−1/2, which must not be much larger than the width of the potential valley; hence k must

not be allowed to approach k0 to closely.
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5.2.1 High temperature limit

As our first example, let us revisit the high temperature limit of a scalar field in a

cavity, studied in Sec. 3.1. This is the regime

Ta ≫ 1, (5.11)

in which thermodynamic approximations are valid. We set the number of species to

one (Q = 1), postponing the analysis of Q > 1 to Sec. 5.2.4.

In order to apply the general result for confinement energy, Eq. (5.8), we need to

know how large k0 has to be. In the thermal regime, the typical φ-modes have energy

and momenta of order T , so confinement is achieved by choosing k0 = T . Since a is

the shortest width, we have A ≥ a2, and Eq. (5.8) implies

Eσ & T 2a. (5.12)

As a function of T , the entropy is

S(T ) ≈ (Ta)3 (5.13)

whereas the right hand side of the generalized Bekenstein bound contains two terms

Ea ≈ Eφa + Eσa ≈ (Ta)4 + (Ta)2 (5.14)

by Eqs. (3.3) and (5.12).

At leading order in the high temperature limit, we see that the ratio

S

Ea
≈ 1

Ta
(5.15)

is not affected by confinement. The Bekenstein bound is satisfied with the same com-

fortable factor (Ta) to spare that we already determined in Sec. 3.1. This is a sensible

result. If a system is much larger than the typical wavelengths it contains, then the

contribution of boundaries to the energy should not have to be large.

5.2.2 Saturation limit

Next, let us turn to the limit in which saturation of the bound may be approached, as

exemplified in Sec. 3.2. This occurs for systems whose various dimensions are all roughly

equal to a single length scale a. Examples include a cubic (or spherical) cavity of side

length (or diameter) a confining a single massless scalar. Saturation is approached as

the maximum total energy, M , is lowered to become of order 1/a. Then the cavity is

occupied by a small number of quanta whose typical wavelength is comparable to the
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cavity diameter, a. Since the entropy is of order one, the canonical ensemble cannot be

used as an approximate substitute for the microcanonical counting of states we employ.

Recall that the total energy of the φ-states, in this limit, is comparable to the

energy of an individual φ-particle, i.e.,

Eφ ≈ 1/a. (5.16)

Hence Eφa is of order unity, like the entropy. The momenta of confined φ particles are

at least 1/a by the uncertainty relation. Thus, Eq. (5.8), with A ≈ a2, implies

Eσ & 1/a. (5.17)

Hence, the confinement contribution to the right hand side of the bound is of the same

order as that of the active field φ. Compared to the analysis without attention to

confinement, the bound is now satisfied with an extra factor & 1 to spare.

We conclude that upon inclusion of confinement energy, systems with very few

quanta can still come reasonably close to saturating the bound. In this limit, however,

the boundary contribution begins to dominate over the field energy. This would appear

to make it even more difficult to devise simple systems in which the bound is saturated

exactly.

5.2.3 Resolving the Casimir problem

If the vacuum state had negative energy EC, the Bekenstein bound would be automat-

ically violated for negative values of M ≥ EC (Sec. 4.1). The calculation of Casimir

energies is often carried out with sharp boundary conditions separating bound states

inside the region V from the continuous spectrum outside. As we have discussed above,

perfect confinement gives rise to infinite barrier energy. However, imperfect barriers

also lead to Casimir energies, and Eq. (4.1) retains its general form even with an ul-

traviolet cutoff. Hence, we will only assume that the background potential confines at

least one particle to a region of width a.

As in the previous example, the uncertainty principle demands that the barrier

height, k0, must be greater than 1/a. By Eq. (5.8), the confining matter therefore has

at least energy

Eσ & 1/a. (5.18)

Comparison with Eq. (4.1) shows that the Casimir energy is parametrically smaller

in magnitude than the positive confinement energy [27]. This suggests that the total

energy is always positive—a result which one expects for complete systems on physical

grounds in any case [33].
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5.2.4 Resolving the species problem

At fixed energy, the entropy of weakly interacting fields confined to a fixed compact

region will increase monotonically with the number of field species. This constitutes

the species problem (Sec. 4.2). We will assume a region of regular shape, A ≈ a2, for

simplicity.

If a type of particle is not confined to the given region, its modes do not con-

tribute to the entropy. For example, one might build a box that confines photons and

electrons, but not neutrinos; in that case, one would not include neutrino states in S.

Hence, we must adapt our estimate of confinement energy, Eq. (5.8), to the problem of

confining multiple fields. We will focus on two simple methods which we expect to be

representative, and which give the same answer.

One possibility is to couple each active field φq to a different background potential

σq via coupling terms
∑

q

λqφ
2
qσ

2
q . (5.19)

Since we must require that none of the couplings are strong (λq < 1 for all q), each

background field σq will contribute gradient energy

Eσq
≈

∫

(∇σq)
2 & 1/a. (5.20)

Hence the total confinement energy obeys

Eσ & Q/a. (5.21)

A second possibility is to couple several or all fields φq to the same background

potential σ via terms λ
∑

q φ2
qσ

2. Then a potential σ that confines certain modes of φ1

to a compact region will confine the corresponding modes of all other fields. Hence, it

would appear that the confinement energy will be independent of the number of fields,

Q. However, radiative corrections to the σ propagator will now be larger, Qλ, because

Q fields are running in the loop. Hence, Eq. (5.1) is no longer sufficient to bring such

corrections under control. Instead, we must demand that

λ < 1/Q. (5.22)

This modifies our estimate for the confinement energy: Eq. (5.8) must be replaced by

Eσ &
Aσ2

0

a
&

QAk2
0

a
. (5.23)
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Compared to the previous paragraph, we hoped to save gradient energy by coupling

all active fields to the same background field. But at the same time we gained gradi-

ent energy because the couplings are now restricted to be weaker, requiring a greater

potential height σ0. The result is the same in both cases: Eq. (5.21).

In order to obtain apparent violations in Sec. 4.2, the number of species had to

be chosen very large: Q ≫ 1. Since Eφ ≈ 1/a in the mass range where the bound

is most easily threatened, the total energy will be dominated by confinement effects

for Q ≫ 1, so that the right hand side of Bekenstein’s bound is at least of order Q.

This conservative estimate increases linearly with Q, while the entropy on the left hand

side grows only logarithmically. Hence, the bound, far from being violated, actually

becomes more comfortably satisfied when the number of species is increased in the

background field model.

Physically, this result is easily understood as follows. Start with a well-localized

system (say, a few atoms forming a small crystal) and increase the species number at

fixed energy. If the new species all couple with the same strength as the original ones,

then the system will develop strong ’t Hooft couplings. It will be transformed by ra-

diative corrections, rendering its size and entropy difficult to calculate and invalidating

the naive argument for a violation of the bound. If, on the other hand, some of the new

species are more weakly coupled than the original ones, so as to avoid strong ’t Hooft

coupling, then the system will delocalize. The more species, the weaker the required

couplings, so that the system grows in size, and the bound increases more rapidly with

species number than the entropy does.

5.2.5 Resolving the transverse problem

Neglecting confinement, we noted in Sec. 4.3 that the generalized (though not the

original) Bekenstein bound is violated by “thin” systems, whose width a is much smaller

than its transverse size. Choosing the maximum energy M to be of order 1/a, one finds

that only one-particle states are allowed, whose number grows as a power law with the

transverse area. Hence, the entropy grows logarithmically with the transverse area; see

Eq. (4.22). Yet the right hand side of the bound is fixed and of order unity.

The estimate of the confinement energy is simple. We need only consider the con-

tributions from the transverse surfaces (e.g., the capacitor plates) to Eq. (5.8). This

contribution dominates over the other boundaries of the system for several reasons: (i)

the transverse boundaries have the largest area, A; (ii) they set the required barrier

height σ0, because 1/a is the largest momentum component; and (iii) they contribute

the largest gradient energy density to (∇σ)2 because a is the shortest dimension. Sub-
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stituting k0 ≈ 1/a in Eq. (5.8), we find for the total confinement energy:

Eσ &
A

a3
(5.24)

The confinement contribution to the right hand side of the entropy bound is Eσa.

By the above inequality, this is at least A/a2 and scales linearly with the transverse

area. In a regular system, for which A ≈ a2, we have already verified above that the

bound is safe. As we increase the transverse size A at fixed width a, the right hand size

of the bound thus grows more rapidly than the entropy S on the left hand side. Hence

the bound remains valid for thin systems. With confinement effects included, the ratio

S/(πMa) actually decreases as the transverse size grows: the increase in entropy is

more than compensated by larger energy needed to enforce boundary conditions along

a bigger surface.

6. Containment energy

In the previous section we argued that confinement—the need to enforce boundary

conditions on localized energy eigenmodes—adds energy to systems which naively ap-

pear to violate Bekenstein’s bound, ensuring that the bound is in fact satisfied. In this

section we explore an alternative source of extra mass that has been suggested [27]

as a contribution protecting the Bekenstein bound. We will ultimately dismiss this

contribution as both insufficient and inessential.

The energy of any quantum state in a cavity generally varies with the volume of

the cavity. Indeed, the presence of Casimir energy ensures that this is true even for

the vacuum state. This implies that the system exerts pressure on its boundary. The

model of the previous section focussed on the need for interactions that keep field modes

confined to a given region. It did not explicitly address the requirement that the cavity

must be mechanically stable against implosion or expansion, which is clearly necessary

if energy eigenstates (which are static) are to be considered. We will now devise a

different model for estimating additional energy, which focusses not on interactions but

instead on the mechanical properties of a container wall counteracting the pressure.

As in Sec. 3 and 4 (but in contrast with Sec. 5), we consider free fields obeying sharp

boundary conditions. However, we will now take into account the pressure or suction

on the boundary surface. We surround the system by a thin wall. This container must

be sufficiently rigid to withstand the range of pressures caused by the states one wishes

to include in the entropy S. We estimate a lower bound on the mass of the required

container. This mass can be expressed as a function of the pressure and the shape of the

boundary, generalizing earlier estimates by Bekenstein [27]. Then we investigate how

this additional energy affects the validity of Bekenstein’s bound in various examples.
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6.1 Mass of a thin container

Consider a region V surrounded by a stationary wall, a container which stabilizes the

matter occupying V against pressure or suction. Let us approximate the container as

a codimension-one source of stress-energy, with distributional stress tensor

T ab = Sabδ[r − r0(ϑ, ϕ)], (6.1)

where r is a Gaussian normal coordinate along geodesics generated by the vector field

na orthogonal to the wall; ϑ and ϕ are the remaining two spatial coordinates.

The extrinsic curvature of the wall in the spacetime is given by the second funda-

mental form,

Kab = ∇anb. (6.2)

The only nonvanishing entries of Kab are the spatial components tangential to the

container, which we indicate by indices i . . . running over ϑ and ϕ. Let P be an

arbitrary point on the wall. By suitable rotation of the coordinate system about na,

Kij can be diagonalized:

Kij = diag(Kϑϑ, Kϕϕ). (6.3)

The diagonal components are the inverse curvature radii of the wall in the principal

directions at P ; negative entries correspond to concave directions.

Let p be the pressure exerted by the enclosed bulk system on the container at the

point P . This pressure results in a force p dϑ dϕ normal to a surface element dϑ dϕ.

The wall exerts a force SijKij dϑ dϕ orthogonal to itself. Thus, the forces cancel if

p = −SijKij. (6.4)

Here we are given a problem where p and Kij are specified, and the task is to find

the most energy-saving material by which the system can be enclosed and stabilized.

That is, we must find a tensor Sij that satisfies Eq. (6.4) while minimizing the surface

energy density, S00. The latter is constrained by the dominant energy condition [42],

which implies for each (fixed) spatial index i that

S00 ≥
√

(Sii)2 +
∑

j 6=i

(Sij)2 + (S0j)2. (6.5)

Recall that the container is taken to be a thin wall, i.e., Sabna = 0. In the frame

where Kij is diagonal, the off-diagonal components of Sab do not contribute to the

pressure balance in Eq. (6.4). Moreover, by Eq. (6.5), turning on any off-diagonal
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components can only increase the minimum energy density of the container. Hence S00

is minimized by choosing a stress-free, isotropic12 wall material:

|Sij| =
|p|
K̂

δij, (6.6)

where

K̂ = tr |Kij|. (6.7)

Then we find for the energy per surface area of the container:

S00 ≥ |p|
K̂

. (6.8)

Physically, this means that the surface density is at least of order the pressure times

the smallest curvature radius at each point. This lower bound is both necessary and

sufficient for the dominant energy condition, so it cannot be improved. The total

container mass therefore obeys

Econt =

∫

d2x
√

hS00 ≥
∫

d2x
√

h
|p|
K̂

. (6.9)

6.2 Examples

Having established a lower bound on the container mass, we may consider the effect of

this additional term on the validity of the generalized Bekenstein bound. Thus, let us

refine our definition of energy to include the pressure term,

E ≡ Eφ + EC + Econt. (6.10)

We will begin by reconsidering examples in which the bound was earlier found to be

satisfied (Sec. 3); then we will return to the problematic examples of Sec. 4.

6.2.1 High-temperature limit and saturation limit

In Sec. 3.1 we considered Q scalar fields in a cavity at temperature T ≫ 1/a. For

simplicity, let us now assume that the cavity is evenly shaped, say spherical with radius

R. We work up to factors of order unity. The bulk pressure is

p ≈ QT 4, (6.11)

12More precisely, we take all of the diagonal components to be mutually equal in magnitude. The

sign of each Sii must be chosen opposite to the sign of the corresponding Kii. If the signs vary, the

material will not be isotropic.
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and the trace of the extrinsic curvature is

K̂ ≈ 1/R. (6.12)

Thus, the mass of the containing wall obeys

Econt & QR3T 4 (6.13)

by Eq. (6.9).

Comparison with Eq. (3.3) shows that the wall mass is at least of the same order

as the field energy it contains. Unlike the confinement energy, the containment contri-

bution does not become negligible in the high-temperature limit. At all temperatures,

its inclusion significantly increases the margin by which the bound is satisfied.

This is true also in the saturation limit, which can be approximately treated within

the above argument, by reducing the temperature to T ≈ 1/R. Instead of approaching

saturation to within a factor of 10 or 100, the gap becomes correspondingly larger upon

inclusion of Econt.

6.2.2 Casimir problem

If it turned out that containment energy necessarily renders the total energy of the

system positive, i.e., if

Econt ≥ |EC|, (6.14)

then one could argue that the Casimir problem is resolved. In fact, however, there is a

simple example in which this cannot be shown.

Consider a spherical cavity containing some field(s) with negative Casimir energy

(for example, a massless scalar obeying Neumann boundary conditions [40]). In the

vacuum, the bulk pressure is

|p| =
|EC|
4πR3

. (6.15)

The extrinsic curvature is

K̂ = 2/R, (6.16)

so that the surface density of the containing wall obeys

S00 ≥ |EC|
8πR2

. (6.17)

Hence, the wall mass satisfies merely

Econt ≥ |EC|/2. (6.18)
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For fields with EC < 0, we are thus unable to conclude that EC + Econt ≥ 0.

Of course, Eq. (6.18) is not generic; it depends on our specific choice of a spherical

container, which minimizes wall energy. For many other shapes, containment energy

does compensate the Casimir energy. (For example, for a long cylinder one finds that

Econt ≥ 2|EC|.) To realize Econt + |EC| < 0, one would require extremely stiff layers

(Sii > S00/2 > 0), which—though allowed by the dominant energy condition—may not

actually occur in nature. Nor should Eq. (6.18) be interpreted as a claim that a complete

stationary system could have negative total energy due to a Casimir contribution.

The point here is merely that containment is not enough to demonstrate positive

total energy; hence, it does not by itself resolve the Casimir problem of the Bekenstein

bound.

6.2.3 Species problem

Bekenstein [27, 28] has argued that containment resolves the species problem as fol-

lows. Each species confined to the region V contributes a Casimir energy EC,q, whose

pressure or suction must be compensated by a container wall. The wall energy will

thus depend roughly linearly on the number of species, whereas the entropy grows only

logarithmically. At the large species numbers necessary for apparent violations of the

bound, the wall energy will be overwhelming.

This argument is not fully satisfactory. Since the Casimir energy has no definite

sign, one could chose a combination of fields whose Casimir energies mostly cancel,

yielding only a small correction to the energy of the first single partice state. Then the

species problem would arise as in Sec. 4.1. Though containment energy does resolve

the species problem in generic examples, this potential loophole remains.

6.2.4 Transverse problem

Returning to the rectangular cavities studied earlier, we note that their boundary

surfaces are flat, so that S00 → ∞ by Eq. (6.8). However, the wall energy can be

rendered finite by allowing the boundary to bulge slightly, as long as this does not

significantly alter the shape of the cavity and invalidate the analysis of field modes. In

particular, the width a of the system should still be approximately a.

Consider, for example, the two large, approximately flat, rectangular surfaces of

area bc containing the pancake-shaped system of Sec. 4.3.2. The pressure or suction

on this surface is at least |p| = |η|/a4 (from the Casimir pressure of the vacuum state).

We may assume that b ≡ a/δ ≤ c ≡ a/ǫ. A simple geometric argument shows that the

principal curvature radii of this surface must vastly exceed a/δ2 and a/ǫ2, respectively,

if the surface is to bulge by an amount much less than a. Thus we find that K̂ ≪ δ2/a,
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and by Eq. (6.8), the surface energy density must be much larger than |η|/(δ2a3). Hence

the total mass of the container must be much larger than |η|/(δ3ǫa).

Note that this contribution to the total energy scales like a power of the transverse

area, and dominates over EC and Eφ for thin systems (δ ≪ 1), in the regime where

the transverse problem arose (Eφ ≈ 1/a). The corresponding growth of the bound

with transverse area outpaces the logarithmic divergence of the entropy, removing the

problem noted in Sec. 4.3.2.

As an example of a pencil-shaped system, consider a cylindrical cavity of length

l ≫ R. It has total curvature K̂ = 1/R on its long sides. Because of their much smaller

area, we neglect the two disks that complete the boundary. In the ground state the

cylinder wall sustains pressure |p| = |EC|/πR2l. Hence the wall must have a density

S00 ≥ |EC|/πRl, and its total mass obeys

Econt ≥ 2|EC|. (6.19)

This implies that Econt+EC, the total energy in the ground state, is necessarily positive.

Though the energy grows only linearly with transverse area in this case, the container

mass bolsters the bound sufficiently to stay ahead of the logarithmic growth of the

entropy.

However, a basic problem of the containment argument is that it relies on the

assumption that pressure on the container builds up at least in proportion to the

entropy. As pointed out in Sec. 6.2.3, this can be circumvented by cancelling off Casimir

energies of different signs. More general problems arise if we do not insist that the walls

must be able to contain all states up to energy M , but count only those states toward

S whose pressure is compatible with the wall design.

For example, the Casimir force on a pair of conducting plates made arbitrarily

large by increasing the transverse area. This force can then be balanced by any one of

a large number of excited states (since only the wavelength along the short direction

is fixed by the cancellation requirement, leaving the transverse wavelength variable).

Thus it would seem that a container with little mass could hold a large entropy.

Of course, this is false—but not because of pressure effects. The most general

reason why one cannot construct massless capacitor plates is that the necessary charge

carriers cost energy. But this is precisely the confinement energy estimated in Sec. 5.

7. Bound states as complete systems

In this section, we summarize the lessons learned from our analysis of examples. We

conclude that interactions are crucial for the operation of the Bekenstein bound: with-

out them, the bound is trivial; but with interactions properly included from the start,
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complete systems simply correspond to bound states, whose number is measured by

the entropy S.

The analysis of Sec. 6 has shown that realistic containers add enough mass to

protect Bekenstein’s bound against many problematic examples of the type constructed

in Sec. 4. However, we have found that this is not guaranteed in general, and we have

pointed out some loopholes. Confinement energy, as estimated in Sec. 5, appears to

provide a more reliable mechanism upholding the bound.

Demanding containment is not only insufficient—at present it is also poorly mo-

tivated. Containers did seem necessary in the context in which Bekenstein’s bound

first arose: systems which are slowly lowered towards a black hole, hovering just above

the horizon before being dropped in, are necessarily subjected to accelerations. It is

therefore difficult to analyze the Geroch process independently of the specific compo-

sition of the system, unless it is placed in a rigid container for the duration of the

gedankenexperiment.

However, in the light of recent developments [15–20], we take the point of view that

the Bekenstein bound, like the GSL, should be properly regarded as a consequence of

the covariant bound. Then conditions arising in the Geroch lowering process are not

necessarily general conditions for the validity of the Bekenstein bound. In the recent

derivation of the Bekenstein bound from the GCEB [15], the system follows a geodesic

in flat space. Hence, no separate container is required, as long as the system holds

itself together through interactions.

We conclude that confinement energy, arising from the need for interactions, is

both the more plausible and the more effective correction to consider when analysing

apparent violations of Bekenstein’s bound: Firstly, it is well-motivated, since the energy

eigenstates of free fields cannot be localized to a finite region. Secondly, it is successful,

in the sense that the background field model studied in Sec. 5 suggests that confinement

contributions invalidate the apparent counterexamples we presented in Sec. 4, without

rendering the bound trivial.

Unfortunately, the background field model turns the application of Bekenstein’s

bound into a two-step process: First, one works out the entropy of an active free field

with fixed boundary conditions; then, one estimates the energy of an additional passive

field needed for enforcing those boundary conditions. This is ugly, and moreover,

both steps are unphysical: the first, because truly free fields cannot obey boundary

conditions; the second, because there is no such thing as a classical static background

potential.

Thus, the background field model is, at best, a crude prescription for completing

incomplete systems. This may be a sensible procedure if one is forced to discuss an

apparent counterexample that fails to include all essential parts of a physical object.
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But it does not itself constitute a satisfactory formulation of the Bekenstein bound, and

it cannot be the last word if the bound is to be ascribed any fundamental significance.

However, the success of the background field model does suggest that if Bekenstein’s

bound has a precise formulation, interactions are of the essence. Instead of patching up

fake counterexamples, it would be preferable to eliminate incomplete systems from the

start. One would like to restrict the application of the bound to systems which confine

themselves through interactions, such as a nucleus, an atom, or a crystal. This forces us

to abandon the simple model of a finite system as a set of free fields confined by external

boundary conditions. Instead, we must consider the proper physical description in

terms of interacting fields with no external boundary conditions, such as QCD, QED,

the standard model, or some low energy Lagrangians obtained from string theory.

Moreover, a statement of the bound with any claim to generality should not require

the specification of a particular macroscopic system (e.g., a block of iron) before mi-

croscopic states are counted. Instead, it should define the entropy S directly in terms

of states in the Fock space of a relevant quantum field theory.

Therefore we propose that complete systems should be formally characterized as

bound states, i.e., eigenstates of the full interacting Hamiltonian which are discrete (have

no continuous quantum numbers). The entropy S will still be defined as the logarithm

of the number of orthogonal quantum states satisfying macroscopic conditions specified

on the right hand side of the bound. But we propose to discard scattering states and

take S to count only bound energy eigenstates.

Of course, any bound state gives rise to a continuous family of eigenstates related

by overall boosts. In order to mod out by this trivial continuum, one may fix the total

three-momentum to take some arbitrary but fixed value. The choice P = 0, the rest

frame, has been implicit throughout this paper and in the literature. Then the energy

eigenvalue of each bound state is simply its rest mass.

Now one may formulate the Bekenstein bound as follows. Pick upper limits on the

rest mass, M , and on the width, a. Define N (M, a) as the number of bound energy

eigenstates with vanishing spatial momentum, eigenvalue E ≤ M , and support over a

region of width a. With

S(M, a) ≡ logN (M, a), (7.1)

the bound takes the form

S(M, a) ≤ πMa. (7.2)
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